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Abstract

In the theory of embodied cognition, mathematical activity is thought to be facilitated in

large part by epistemic “mappings” that translate bodily intuitions about the world into

abstract conceptual domains. Since their popularization, these ideas have influenced

discourse in mathematics education. Another currently popular topic in mathematics

education is the growing evidence that learning games can enhance learning outcomes.

Combining these facts, this work proposes to construct real-world or virtual games which

directly map onto mathematical concepts via conceptual metaphors. Games of this kind,

which I dub conceptual metaphor games, intend to encourage learning as exploration,

making for an approach to inclusive pedagogy which is both person-centric and

theoretically sound such that it can be accessibly presented as separate from the

underlying theory. I argue that play and discussion of these games can serve as

“grounding” experiences with mathematics that confer understanding through a

lighthearted medium. An example is given involving the embodied source domain of frogs

hopping on lily pads, demonstrating an implementation of such a conceptual metaphor

game in a pedagogical context. Additionally, I implement a demo level of a virtual

browser-based game which can extend to a larger project for empirical evaluation.
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Emerging theories in cognition suggest that mathematics is embodied. What this

means is that mathematical activity arises fundamentally from bodily intuitions individuals

use to represent and navigate their world. In the case of humans, this includes the use of

pattern-preserving conceptual metaphors (Lakoff and Núñez, 2000) between embodied

domains and abstract, symbolic representations, after which the symbols can be

manipulated by themselves, and then “mapped” back into the original domain to obtain

physical results. For example, a human may recognize that they do not have enough beads

for a bracelet by first interpreting the physical quantity of beads possessed as a symbolic

entity (e.g. “there are seven beads”), then examining some facts in the symbolic realm

(e.g., “7 < 10”), and finally bringing this back into the “real” (“there are too few beads”).

Although the story gets more complicated as metaphors develop between abstract domains

and even among metaphors themselves, there is a good case that even logic itself is rooted

in temporal and spatial intuitions about the world, as to be argued further in the coming

sections.

In addition, emerging theories in cognition suggest that mathematics is situated.

What this means is that mathematical knowledge is dependent on the environment in

which individuals act; that is, embodied intuitions and metaphors reside in their context.

The concept of “environment” affords multiple levels of analysis; for example, the

environment is both ecological and sociocultural. In the case of the former, the content of

mathematics is dependent on the physical properties of the environment, often perceived

amodally, i.e., echoing across the senses (as in: two sounds, two sights, two tastes, etc.).

The latter, however, is just as important; knowledge is embedded within communities of

practice, wherein learning becomes an innately social process by which learners not only

become acquainted with adequate tools for interpretation of content but also form cultural

identities by participation in the community (Lave and Wenger, 1991). For this reason,

human mathematics is not “culture-free,” but instead is found in a complex interaction

between embodied perception and the social world. Therefore, despite the embodied nature
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of mathematics, there are means by which able people can be deterred or excluded from

communities and their resources, which would otherwise enable them to participate in

mathematics or form identities adequate for participation. However, experiences through

which mathematics is directly conveyed as “grounded” in embodied realities can serve as

identity construction and affirmation for people as learners of mathematics.

In this work, I describe conceptual metaphor games, a form of mathematical

learning game which is (1) grounded in the embodied cognitive science of mathematics and

(2) suitable to be implemented as a practical and person-centric approach to mathematics

pedagogy.

Literature Review

In setting the stage, historical context is presented for the discipline of cognitive

science and the theory of embodied cognition, along with a discussion of the application of

cognitive science methods to inquiry regarding mathematics. Then, a general summary of

the driving pedagogical theory behind the work is offered, before going on to describe

conceptual metaphor games.

Cognitive Science

Cognitive science is an approach to studying “mind” which is classically defined as

the intersection of six disciplines: psychology, neuroscience, anthropology, linguistics,

philosophy, and computer science (Von Eckardt, 1993). As the story goes, the history of

the discipline of cognitive science is linked to the theory of computation—to the excitement

of automata, formal language, and information theory. The so-called “cognitive revolution”

coincided with the arrival of electronic digital computers and growing interest in artificial

intelligence (Pinker, 2011). While the proposed interdisciplinarity of cognitive science may

be exciting, it is worth mentioning that there is an ongoing historical debate over the

foundations of the field, in particular with respect to (1) its definition, including its

relationship to computationalism, i.e. the view that the mind is a computing machine, and
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(2) its status as either multidisciplinary or as a truly integrated interdisciplinary science

(Gray, 2019; Núñez et al., 2019). To frame the context for this work, we describe some

relevant history, including where these foundational issues arose, along with the build-up to

the need for an embodied cognitive science.

Cognitivism is often contrasted with behaviorism, notably in the words of

psychologist George A. Miller:

Behaviorism was an exciting adventure for experimental psychology but by the

mid-1950s it had become apparent that it could not succeed. As Chomsky

remarked, defining psychology as the science of behavior was like defining

physics as the science of meter reading. If scientific psychology were to succeed,

mentalistic concepts would have to integrate and explain the behavioral data.

We were still reluctant to use such terms as ‘mentalism’ to describe what was

needed, so we talked about cognition instead. (Miller, 2003, p. 142)

However, while mental representation is generally an object of study in cognitive

psychology, cognitive scientists do not swear an oath to shield their eyes from human

behavior. That is, cognitive science is not properly defined as mutually exclusive from the

behaviorist project. Instead, one succinct summary of the underlying suppositions of

cognitive science is that “thinking can best be understood in terms of representational

structures in the mind and computational procedures that operate on those structures”

(Thagard, 2020), but there are varying ideas of what “representation” and “computation”

are. Barbara Von Eckardt’s What is Cognitive Science? outlined four important

components which make up the cognitive science framework: “the domain-specifying

assumptions, the basic questions, the substantive assumptions, and the methodological

assumptions” (1993, p. 303). In that work, she certainly emphasizes the importance of

mental representation and the computationalist view, although from its inception in the

mid-20th century, the latter idea has been as popular as it is controversial.
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Just what “computation” is and what its definition implies about “mental

representation” is not a trivial matter. Borrowing from the work of C. S. Peirce, von

Eckhardt describes a common notion of representations, consisting of three parts: sign,

object, and interpretant (Von Eckardt, 1993, p. 145-159). For example, a person may form

a mental representation of a friend. Roughly speaking, how the representation of the friend

shows up in the brain and body of the person is the “sign”; the “object” is the person

themselves; and the “interpretant” could involve, for example, the emotions the friend

evokes in the person. But this hardly says anything about what signs are or how they come

to represent objects.

Since the computational view assumes that the mind is a computing machine,

representations are generally understood in terms of “information-bearing structures” that

process a kind of “machine code.” On a classical view such as Jerry Fodor’s Language of

Thought Hypothesis, the “machine code” processed is a kind of “mentalese,” the mind’s

way of encoding information in a way that resembles language (Pitt, 2020). This idea,

which posits thought to be “atomic” in that there are some minimal linguistic units which

compose thought, is reasonably fleshed out to the point that it gained significant traction

as an idea worth taking seriously (Von Eckardt, 1993, p. 342). However, a closer

examination of the structure of nervous systems gives rise to a counter view known as

connectionism. Connectionists emphasize the “rhizomatic,” interconnected structure of

neural architectures, which perform computations in a highly parallel way. This means

that the overall distribution of processes occurring throughout a brain-body system play

into “representation,” not just local neurons that do serial abstract computations. So on

this reading, instead of discussing mental symbols, the subject matter is patterns of

activation in neural systems.

Historically, though, the computational metaphor has been important to the study

of cognition, regardless of how seriously it ought to be taken. For example, cognitive

scientists may choose to “dissect” the mind into mechanical components: perception,
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memory, attention, judgment, and so on, although taking these faculties to be literally

distinct may amount to modern-day phrenology. Today, one has to take care in describing

exactly what is meant when describing the mind as a computational machine; it is often

held that the mind-computer analogies are at best convenient fictions. While “cognitivists”

in the strict sense are still around today, even von Neumann, who spelled out the

brain-computer analogy in writing as early as 1958, could not bring himself to accept it as

any more than a metaphor (Peters, 2018; Von Neumann et al., 2000). The analogy suffers

from internal problems related to both time and memory complexity as well as functional

and architectural differences, notably including the fact that the human nervous system

operates in a massively parallel way.

From a more general view, this romantic metaphor doesn’t look too different from

the Cartesian idea that animals are machines—after all, “the spirit of Hebrew clay, the

Roman aqueduct, the hydraulics of the humors (and its eventual Cartesian pump), the

medieval catapult, Freud’s steam engine, Helmholtz’ telegraph, and today the holograph,

among a host of other new media, have all been compared to the brain and its neural

system” (Peters, 2018). In other words, comparisons between mind and computer appear

to be no more than particular examples of mappings from tool-related conceptual domains

into the conceptual domain of “mind” itself. Peculiarly, the very concept of metaphor has

been increasingly recognized as an important facet of human cognition, especially by the

philosophy of science, ever since as early as the birth of cognitive science itself (Hesse,

1965; Von Eckardt, 1993, pp. 98-104), and in the context of several newer theories which go

beyond classical computationalism under the umbrella of embodiment (Lakoff and

Johnson, 1999).

Indeed, it has been increasingly acknowledged that the body plays a central role in

mental faculties, an idea referred to as embodied cognition (Barrett, 2011; A. Clark, 1999).

However, these theories are relatively new and rapidly developing, not necessarily unified,

and some more radical or controversial than others. As alluded to, situated cognition
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emphasizes the role of the environment and context in cognitive processing, in part

drawing largely on the ideas of J.J. Gibson, especially the notion of affordances:

environments “afford” certain behaviors from animals. These affordances do not belong

properly to the mind or to the environment, but instead are found in the interaction

between the two. In addition, perspectives in connectionism and parallel distributed

processing have demonstrated that cognitive processing is far from serial (Núñez et al.,

2019). Margaret Wilson gave an excellent overview of the situation as it was two decades

ago in her “Six Views of Embodied Cognition” (2002). Despite its recency, the conceptual

framework of embodiment is important to the central idea of this work, and is discussed in

more detail in the next section.

Today, as the foundational challenges persist, some question whether there is hope

for a truly integrated “cognitive science” as opposed to plural “cognitive sciences.” Namely,

Rafael E. Núñez, an influential figure in the modern cognitive science community and

coauthor of the book Where Mathematics Comes From which lays groundwork for this

thesis, recently published a paper expressing concern that the integration of the cognitive

sciences is a dead dream, and that overall the project of cognitive science has failed (Núñez

et al., 2019). The paper argues that psychology and computer science have largely

dominated publications in cognitive science, while the other four “hexagonal” disciplines

are largely left behind, especially anthropology. On the other hand, that original paper,

which employed digital methods to generalize over a vast body of academic literature

spanning over more than half a century, has received a noteworthy amount of criticism

(Gray, 2019). In fact, some hold the opposite view, i.e. that cognitive science is “thriving

on both the research and educational fronts” and that “it shows great promise for the

future” (McShane et al., 2019). These debates, in reality, are nearly as old as the field

itself; even von Eckardt cited 20th-century examples of concerns that “perhaps there is no

such thing as cognitive science, really,” and in turn spends the rest of her book arguing

that “there is far more implicit agreement among cognitive scientists (of all disciplinary
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stripes) as to their goals and their basic assumptions than the skeptics would have us

believe, and that where genuine disagreement exists—and it certainly does on a number of

points—there are rational grounds for adjudicating it” (1993, pp. 1-3).

A thorough untangling of this dizzying braid of theoretical back-and-forths is

beyond the extent of the matter at hand. However important these matters may be, the

present work operates under the assumption that the practice of cognitive science is at

least possible, and makes a genuine attempt towards interdisciplinarity. Additionally, while

the importance of the computational metaphor fades under the shadow of embodied

processing and situated cognition, these worlds are not necessarily all distinct for some

conscientious definition of “computation.”

Embodied and Situated Cognition

One way to state the embodiment hypothesis is that sensory and motor processes

are tied up with cognitive processes, and can serve at least to some extent in place of

abstract disembodied representations such as “mentalese.” Embodied cognition can

maintain discussion of “representation,” but on this reading, representation occurs through

sensorimotor activation patterns rather than being separate from them. For example,

Wilson gives the example of how neural patterns of activation associated to the visual,

auditory, and kinesthetic memory look similar to that observed when the recalled

experiences are actually perceived (2002, p. 633). In other words, she argues that many

“offline” processes that appear highly abstract, such as mathematical activity, in fact are

co-optings of sensorimotor networks, “decoupled” from “real” input. In place of a model of

the brain as a central processing hub that commands the body by internally representing

every aspect of the world in a “perceive, think, act” fashion, instead embodied cognition is

a dynamic coordination between perception and action that runs “just-in-time” (A. Clark,

1999), and while offline processes do occur, they occur through the body. Moreover, in this

view of the mind, temporospatial properties of bodies serve as parameters of “processing”
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whereby living entities perceive and navigate the world.

For example, in a behavior known as “phonotaxis,” female crickets orient towards

male crickets that have the loudest songs. Performing a sorting algorithm would appear to

be beyond the neural capacity of the average field cricket. In fact, no such algorithm is

needed. As demonstrated by Barbara Webb and her biomimicry “cricket robots,” the

“program” is really just “go wherever the sound gets louder.” This process occurs through

the neurally and vibrationally coupled structure of the cricket’s auditory system, along

with the males’ auditory signals being staggered to the rhythm of the refractory period of

the interneurons that, by design, can respond directionally to input (Barrett, 2011,

pp. 45-49). This example is a clear case of the importance of an organism’s body in a

process which would otherwise be considered “cognitive,” and, as will be discussed, similar

generalities extend to analyses of human behavior. What is more is that, as the picture of

cognition expands to include the body, it is not too long before one arrives at the necessity

to go even beyond the skin; that is, the mind is influenced by things external to the body.

Situated cognition and distributed cognition both hold that an organism’s

environment plays an influential role in shaping both perception and action. Environments

afford certain actions from organisms in particular contexts, notably through the

associative structure of neural systems. For example, for many humans, a pen affords

writing; it “calls out” to be written with. The theory of distributed cognition emphasizes

the blurriness of the lines dividing individual minds and their environments. When a pen is

in grip and writing ink on a page, the pen and paper in a sense become a “part of” the

mind and body of its user as they work together. In the example of solving a math

problem, the brain-body system need not store an accessible representation of the written

information, the cognitive burden of which is offloaded onto the paper. The strong view

that the mind need not be internal and that the environment can be considered part of

cognition is known as extended mind (A. Clark and Chalmers, 1998).

As mentioned, the perspective of situated cognition is relevant here insofar as it
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places the study of mathematics in an inherently social context. From the work of

cognitive anthropologist Jean Lave and educational theorist Étienne Wegner, a community

of practice is “a set of relations among persons, activity, and world, over time and in

relation with other tangential and overlapping communities of practice,” and it is “an

intrinsic condition for the existence of knowledge, not least because it provides the

interpretive support necessary for making sense of its heritage” (1991, p. 98). That is,

knowledge is necessarily a community practice rather than a static, intangible body of

propositions; see also Kuhn’s Structure of Scientific Revolutions, where he consistently

speaks of “scientific communities” (1970). This draws attention to the fact that, even with

its embodied origin, much of knowledge must be obtained through cultural reinforcement,

and so social elements can serve as inhibitions in the learning pipeline. In the particular

case of mathematical knowledge, the same general facts apply.

Embodied Cognitive Science of Mathematics

At a general level, one might argue that if cognition is embodied, and mathematics

is in some sense cognitive, then mathematics is also embodied. To give a more specific

example of this genre of discourse, consider “An Extended Mind Perspective on Natural

Number Representation,” where Helen De Cruz gives an analysis of numerical

representation in humans, in particular the relationship between bodies and counting

(2008). Notably, she mentions the importance of body-part counting in many cultures,

citing facts ranging from the relationship between the English words “four” and “five” and

the Proto-Indo-European words for “finger” and “hand” respectively (note also the

relationship between the convention of ten fingers, the decimal system, the English word

“digit,” and the Latin word digitus), to the more complex body-part counting systems of

the New Guinea Highlands in which touching an individual body part corresponds to a

certain quantity. She highlights the practical convenience of the metaphorical mapping

from the body schema, a collection of neural encodings of the body’s spatial configuration
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located in the left intraparietal region. The closeness of these neurons to the inferior

parietal region, which has been repeatedly shown to be a hotspot in the brain associated

with mathematical activity, makes for easier communication between the body schema and

the conceptual domain of arithmetic.

Representation of Quantity

Twelve years prior, cognitive neuroscientist Dr. Stanilas Dehaene popularized ideas

in the cognitive science of mathematics in the 1996 edition of The Number Sense (2011).1

He speaks a fair bit of the aforementioned inferior parietal cortex (pp. 189-190, 228-230), a

region in which the presence of lesions can lead to complications with mathematical ability.

For example, the book surveys classic theories about the representation of quantity in

animal cognition. A well-replicated result, known as early as 1886 (Dehaene, 2011, p. 66),

reveals that humans can immediately “subitize” cardinalities one, two, and three, although

it generally gets more difficult starting at four (Mandler and Shebo, 1982). From the Latin

subito meaning “suddenly,” subitization is the “instant” recognition that a certain number

of objects are present, where “instant” means roughly around half a second (Lakoff and

Johnson, 1999, p. 19). There is also extensive evidence that non-human animals, including

fish (e.g. Poecilia reticulata, also called guppies) and honey bees (Apis mellifera) can work

well with quantities 1-4 (Agrillo et al., 2014; Dacke and Srinivasan, 2008). Subitization is

distinct from explicit counting or estimating; the former is a uniquely human “algorithm”

which employs a recursive pattern to assign quantities to objects, allowing one to work

with numbers which they cannot otherwise conceptualize. Without counting, precision and

speed of recognition fall off drastically after four, as subitization rapidly turns into

approximation. The acknowledgment of this distinction led to a search for the cause of the

1 His work is reminiscent of the witty writing style of the logician Raymond Smullyan, who loved logic

puzzles. Speaking of twelves and Raymonds, the book opens with a quote by Raymond Queneau: “any

poet, even the most allergic to mathematics, has to count up to twelve in order to compose an alexandrine”

(p. 3).
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phenomenon.

Dehaene wrote in support of a theory about a mechanism of mental accumulators.

An accumulator can be imagined as an electrical circuit which “accumulates” intensity as a

signal flows across its input channel, and when the signal stops, it outputs whatever the

final summed intensity was. It acts an approximate measuring machine for sensorimotor

signals. This idea relates to Weber’s law, which states that there is a relationship between

the pre-existing “intensity” of something perceived and how much change needs to occur in

what is perceived in order for it to be recognizable (Dehaene, 2011, p. 72). When looking

at a page filled with three dots, it is easy to tell it apart from a page with ten dots; when

there are 200 dots, one may need to add some dozens of dots before a change is detectable.

In mathematical terms, the minimum change ∆S in intensity required for a change in

stimulus to be perceptible is a constant percentage k of the intensity S of the stimulus,

that is ∆S = kS. By the tradition of the similar but logically independent Fechner’s law,

the mental accumulator does not accumulate as fast as the input signal itself; its output

scales as the logarithm of the measured intensity S (Algom, 2021). Given that this

relationship has empirical evidence, it suggests the human “mental number line” is not

linear but approximately logarithmic (De Cruz, 2008). Yet, the previous paragraph

demonstrates that Fechner’s law fails at low intensity; perhaps the error in the “mental

accumulator” mechanism is highly negligible for lower numbers, although on the other

hand, one might argue that they are separate mechanisms altogether (Agrillo et al., 2014).

On a final note with respect to the research of Dehaene, it is worth noting that an

effect has been observed in experimental psychology regarding human associations with

“large” and “small” versus “right” and “left.” Referred to by Dehaene as the

Spatial-Numerical Association of Response Codes, or SNARC in honor of Lewis Caroll’s

nonsense poem “The Hunting of the Snark,” the finding concerns the fact there are various

scenarios where human samples can demonstrate a directional bias in association between

magnitudes and spatial information. First, when American subjects were asked to press a
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key to indicate whether a number is larger or smaller than 65, it is reported that the effect

exemplified itself as a faster response with the right hand when the given number was

larger than 65 than with the left hand, and vice-versa for when the number was less than

65 (Dehaene, 2011, p. 80-81). Second, while SNARC has been observed in a variety of

contexts and replicated over a hundred times, there is also reasonable evidence that this

phenomenon is subject to cultural influences; Dehaene says that in a sample of Iranian

subjects, those with “less exposure to Western culture” tended to demonstrate an

association of larger magnitudes with “left-space” instead (2011, p. 82). This implies that,

among a variety of variables, directionality of writing systems may be a factor, but these

claims deserve a very careful analysis. Last, as a SNARC effect has been observed for

auditory signals, it is possible that it is an amodal phenomenon (Nuerk et al., 2005). While

the details require further investigation, the effect indicates an important relationship

between spatial frame of reference and conceptions of quantity.

Schema and Metaphor

Both influential and controversial, published at the dawn of the second millennium,

a book which elaborately popularized an embodied theory of mathematics is the mentioned

Where Mathematics Comes From by cognitive scientist Núñez and cognitive linguist Lakoff

(2000). The authors argue that the foundations of mathematics cannot be described by

mathematics itself, but instead can be reduced to embodied metaphors through a process

called mathematical idea analysis. Citing authors such as Stanilas Dehaene and Saunders

Mac Lane, the book characterizes counting and arithmetic with “Four Grounding

Metaphors,” logic and sets with spatial relations, and infinity and the real numbers with

the “Basic Metaphor of Infinity.” In a 450-page analysis, the authors paint a polarizing

picture of mathematics, supported by evidence from Lakoff’s theory of cognitive metaphor,

embodied neuropsychology, the history of mathematics, and of course mathematics itself.

This section attempts to shed some light on how their work looks at abstraction through
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an embodied lens.

Although some have raised the point that one probably ought to be skeptical of

taking any given metaphor at face value (Sinclair and Schiralli, 2003), there is a surprisingly

convincing contention that metaphor is central to everyday and abstract thought (Lakoff

and Johnson, 1999). Consider the ubiquity of phrases which compare commonplace

matters to physical properties of the world. When two things are similar, they are “close”;

when they are different, they are “far.” In the case of emotional “distance,” one is “cold,”

whereas there is a comfortable “warmth” or “heat” to attraction. These relationships may

appear to be no more than linguistic happenstance, but convergent evidence suggests that

they are not entirely arbitrary. In some cases, the correlation between the two relevant

domains is such that the domains become conflated; whenever one neural pattern of

activation occurs, the other shows up as well, an event referred to as coactivation (Lakoff

and Núñez, 2000, p. 43). Although real neural systems get more complicated than just the

general Hebbian maxim that “neurons that fire together wire together,” this fact illustrates

neural regions which commonly coactivate become both electrically and vibrationally

linked. This is a simple intuition for the causal mechanism behind conceptual metaphor.

Some housekeeping is in order. So far, there have been references of conceptual

domains, which have not been defined yet somehow treated as though they were actual

objects in a Platonic sense; this need not be so. Whatever the ontological commitment, the

key assumption is just that conceptual domains are organizations of knowledge, so that it

makes sense to discuss things such as a person’s “conceptual domain of arithmetic.”

Moreover, note that while Lakoff and Núñez’s book Where Mathematics Comes From

makes radical claims about the universal applicability of the concepts mentioned here,

there has been extensive literature critically analyzing those claims; for example, the book

speaks little to the ways particular individuals represent concepts, instead presenting its

analysis as the “real” way mathematical concepts are understood (2000; Sinclair and

Schiralli, 2003). All this said, arguments for some key takeaways from their analysis are
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made here. To begin, it is necessary to introduce a new concept, instances of which will

present as unified nouns, but again it is assumed that these “objects” are simply useful

concepts which have some manifestation in brain-body systems.

Lakoff and Núñez posit that structures referred to as image schemas (also spelled

schemata, as it is from Ancient Greek σχῆμα, “form”) play an important role in the

cognitive organization of information by integrating multimodal data, providing

communication between different faculties (Lakoff and Núñez, 2000, p. 27-49). To give an

important example, the Container schema is composed of an Interior, an Exterior, and a

Boundary2. Together, these parts form a mental model such that one can be “highlighted”

or profiled. So the example of the In schema, say, for a person being in a room, the Interior

of the room is profiled, and it serves as the landmark for the person. A fascinating

entailment about schemas is that they are important to perception; after all, when

something is said to be “in a field,” where could the container of the field be but in the

imagination? In this vein, cognitive linguist George Lakoff has demonstrated that there is a

plethora of data from the study of language informing the concept of schema, including the

insight that image schemas are not necessarily universal and may vary across cultures and

languages (Lakoff and Johnson, 1999).

The Container schema is a classic example offered by Lakoff and Núñez (2000,

p. 31-32) that connects the internal relations of the spatial schemas to the foundations of

logic and set theory. A set in mathematics is a collection of objects, and the principal

relation for sets is membership; in English, when this relation holds between a containing

set X and an element x, one says that “x is in X,” and writes x ∈ X. For example, the

natural number 2 is in the set of evens. Furthermore, it is generally thought to be a

contradiction that something could be both “inside” and “outside” of a container, an idea

strongly related to the principle of excluded middle in classical logic: Given a statement p,

it is either true, or the negation of p is true (although in intuitionist logic, this does not

2 In the branch of mathematics known as topology, sets are commonly dissected into these three parts.
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hold!). So, given that p is “2 is in the set of evens,” in classical logic, it is either the case

that 2 truly belongs to the set of evens or that is does not, and in the latter case it may be

said to be “outside” the set. In fact, sets are often visualized as Venn diagrams which

“embody” their relationship to the Container schema. That depiction highlights the fact

that object can be in (or out of) two Container schemas at once; the middle of a Venn

diagram is likened to the intersection of two sets, the set which contains only the elements

which reside in both sets. Before coming to how it is that humans form this connection

between the abstract domain of sets and the concrete operations of the Container schema,

one other schema must be discussed.

The other relevant schema worth introducing here is the Source-Path-Goal schema.

This schema is very important to conceptions of motion. Its object is a trajector which

moves, and the trajector has a source at which it starts, a path along which it travels, and

a goal to which it travels. At each point in time, the object has some position and

direction, and as the actual trajectory of the object may or may not be different from its

intended path, the goal may or may not be the same as the end location of the trajector.

Basic properties internal to Source-Path-Goal schemas manifest in a wide variety of

mathematical concepts. Lines are thought of as “meeting” at a point, and functions are

said to be “increasing” or “decreasing,” as if either of these things are truly moving. For

example, bringing an example from abstract algebra, cyclic groups are often visualized as

the symmetries of regular two-dimensional shapes such as an equilateral triangle, whose

symmetries would correspond to the cyclic group of order three, denoted Z3. Concretely,

rotating such a triangle by 120 degrees makes it “fit” back onto itself, so this is a symmetry

of the triangle, and the action of rotation is likened to the generating element of the cyclic

group. In this example, the source is the initial orientation of the triangle; the path is the

120-degree rotation it takes; the goal is the new orientation of the triangle obtained after

moving. The schema even manifests itself in the fact that there is an explicit object in the

cyclic group Z3 called the identity element which refers to the “source,” or the motion
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which remains at the current source state. So, how is it that spatial understanding of the

world gets wrapped up in abstraction?

This is where conceptual metaphor comes in. In general, a conceptual metaphor is

whenever information in one conceptual domain is thought of in terms of another domain.

An elementary example of such a metaphor important to abstract thought is the metaphor

Categories Are Containers. The source domain of this metaphor is the Container schema

and the target domain is the conceptual domain of categories. When one speaks of bats

being “in” the category of animals, it happens via the Categories Are Containers metaphor.

So it appears that How the Embodied Mind Brings Mathematics Into Being, as the

subtitle of their book goes, is prevalently through both (i) metaphorical mappings from the

domain of physical phenomena to mathematical domains (grounding metaphors), and (ii)

higher-order mappings between abstract domains (linking metaphors). For the conceptual

domain of arithmetic, there are some important grounding metaphors from physical

domains, which serve to generalize over a range of phenomena and motivate foundational

concepts. In Lakoff and Núñez’s original theory there are four main ones, but again, there

is no rule that there are only four; all that matters is the general framework they provide.

Their tetrad consists of Arithmetic Is Object Collection, Arithmetic Is Object

Construction, Numbers Are Physical Segments (the Measuring Stick Metaphor), and

Arithmetic Is Motion Along a Path. Since this work treats the final of these four in what

follows, I only extensively elaborate on that one, and leave the construction of the other

three as “exercises for the reader.”

Arithmetic As Motion

In what follows, two ways of conceptualizing the metaphor of arithmetic as motion

are presented. The first is in the more or less informal spirit of Where Mathematics Comes

From, where aspects and properties of the source domain are connected to those of the

target domain. The second is a more “formal” characterization of the same metaphor,
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presented in a similar light to the concept of homomorphisms in algebra, or morphisms in

category theory. Both perspectives may be useful for different purposes.

Source domain Target domain

Motion Along A Path Arithmetic

The action of moving along a path −→ Arithmetic operations

A point-location on the path −→ The result of an arithmetic opera-

tion; a number

The origin, the beginning of the path −→ Zero

The unit location, a point-location

distinct from the origin

−→ One

Further from the origin than −→ Greater than

Closer to the origin than −→ Less than

Moving from a point-location A away

from the origin, a distance that is the

same as the distance from the origin

to a point-location B

−→ Addition of B to A

Moving toward the origin from A, a

distance that is the same as the dis-

tance from the origin to B

−→ Subtraction of B from A

Above is a reproduction of the table representing the Arithmetic Is Motion Along a

Path metaphor from Where Mathematics Comes From (Lakoff and Núñez, 2000, p. 73).

Here, “arithmetic” concerns natural numbers, but the authors mention that the metaphor

is readily extended to negative numbers. The authors go on to show that these same ideas

can be extended to multiplication and division—in the sense of “skip motions,” i.e. instead

of moving one unit at a time, one skips over some each time—as well as fractions, by only

moving a portion of the unit motion. In a similar vein to the other mappings mentioned in
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the book, one can also draw connections for particular properties of the domain, for

example, commutativity: in the same way that the order of addition doesn’t affect the

outcome, the order of linear motions doesn’t affect the end result, as “moving three left,

and then two right” is just as good as “moving two right, and then three left.”

The benefit of drawing out a table like the one above is that it makes the nature of

the mapping clear by showing how the different elements of the source domain match up to

the target domain. However, its convenience has a price in another sense: it justifiably

posits a generic domain of “arithmetic,” which is more faithful to the conceptual realm

than it is to the modern field of mathematics. For example, in mathematics, notions of

“greater than” or “less than” are often considered belonging to the domain of order theory,

whereas the content of the arithmetic operations mentioned properly belong elsewhere. If

one interprets “arithmetic” to be the integers rather than just the natural numbers, the

realm of interest is group theory, as it is characterized with the theory of abelian (i.e.,

commutative) groups, specifically dealing with the additive group of integers (Z, +). (For

readers unfamiliar, “the additive group of integers” is a fancy way of referring to the

mathematical object obtained by taking all “whole” positive and negative numbers along

with zero and equipping this set with the operation of addition.) We could attempt a more

minimal mapping, as shown below.
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Source domain Target domain

Motion Along A Path The Additive Group of Integers

(Z, +)

The actions of moving uniformly

along a path

−→ Elements of the group

The action of “doing nothing” −→ Zero (0), the identity of the group

The unit action in a direction along

the path

−→ One (+1), the generator of the group

The unit action in the opposite direc-

tion along the path

−→ Negative one (−1), the inverse of the

generator

Note, first, that this view of the metaphor uses a small amount of information to

demonstrate how the two domains correspond. In a sense, one could limit to just the last

two rows (or perhaps even just the third), but all four are included for clarity. All other

correspondences one could draw out between the two domains follow from these. the

version of the metaphorical mapping in the table above may possibly be improved, albeit

perhaps made less clear, by referencing the conflation between action and state. An element

of a group is generally thought of as an action or a transformation. However, it is also a

“state”; the number one may be the act of hopping once on a path, or it may be the state

obtained after performing such an action. In mathematical terms, the preimage of a group

element under the metaphorical mapping is both physical motion and the result of physical

motion. Either way, this pseudo-formal mapping can be thought of as a “proof” that every

internal fact about the additive group of integers can be rewritten as a fact about linear

motion along a path. However, it seems easily argued that even this particular metaphor is

still more heuristic than rigorous; for example, one needs to conceptualize an infinitely long

path for “every fact about the integers” to directly translate. Nonetheless, this is

reminiscent of the concept of homomorphism in algebra, where the image of the generators

of a group under a homomorphic mapping determines the entirety of the mapping.
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A homomorphism, informally, is a mapping from one object to another which in

some sense respects the structure of the object being mapped. This concept is ubiquitous

in grade school mathematics, just not drawn attention to. For an example, consider the set

R of all real numbers equipped with the operation of addition +, and let c be any nonzero

real number. Let ϕ be the function (a “rule”) which sends any real number x to x
c
; in other

words, give ϕ a number x, and it will divide it by c. The map ϕ is a group homomorphism,

since for any real numbers x, y, we have

ϕ(x) + ϕ(y) = ϕ(x + y)

or more explicitly
x

c
+ y

c
= x + y

c
.

In words, this means that “adding x and y and then dividing by c” gives the same result as

“first dividing x by c, then dividing y by c, and adding them.” This is not necessarily an

obvious fact; it is a nice property of the real numbers. As in the case of any

homomorphism, where ϕ sends 1 determines the entire mapping; e.g., if ϕ sends 1 to 1
2 ,

then every real number gets halved by ϕ. What is more is that, since ϕ uniquely sends

every real number to every other real number, i.e. it creates a one-to-one correspondence

from the set of reals R to itself, this map is called an isomorphism. (In fact, because it is

an isomorphism on the group R itself, it is an automorphism, a “self”-isomorphism.) When

two groups are isomorphic, they are in a sense “the same group” in that their elements

have exactly the same relations.

This is all worth summarizing because the similarity between homomorphisms and

metaphors is meaningful in this context. For one, the examination of these matters is that

of—surprise!—a metaphor itself, namely the metaphor Metaphors Are Group

Homomorphisms. In the case of the Arithmetic Is Motion Along A Path metaphor, the

relationship does not hold up well; no one has ever proved the existence of an infinitely

long path in the real world, but the integers form an infinite set. However, when one
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restricts to just a few lily pads hopping in a circle, one encounters a different, much more

precise metaphor: Modular Arithmetic Is Motion Along A Cyclic Path. The term modular

arithmetic refers to how counting works on a clock: starting at one, going up, and resetting

back to one after twelve. In this case, the formal target domain is a finite cyclic group,

whereas before, in the case of the integers, it was an infinite cyclic group. This idea will be

made concrete in the elaboration of the methods, but now the paper turns to general

pedagogical matters.

Pedagogy and Mathematical Ability

What puts limits on human aptitude for mathematics? There are some popular

answers to this question which are found lacking. A dominant stance is that the abstract

nature of mathematics is what makes it so difficult that it is suitable for only those blessed

with the elite intelligence required to understand it. This is a kind of “fixed-trait” view

that attempts to takes into account biological variance in mathematical ability. Analysis of

responses to an attitudinal questionnaire presented to 284 primary students in Greater

London revealed that many students attributed mathematical ability to fixed

characteristics such as being “cleverer” or having a bigger brain (Marks, 2015). Their

answers demonstrate a reconciliation of identity with self-perceptions in relation to

mathematical ability, the common belief being that mathematical ability or the lack

thereof is simply a matter of “who people are.”

Indeed, the culture of mathematics itself appears to be one of sensationalism,

glorifying the “geniuses” with remarkable insight. Besides the some hundred of concepts

named after the mathematician Gauss, equally common is talk of the “divinatory” analysis

of Srinivasa Ramanujan, who lived during the time of British Raj and is praised for his

plentiful contributions to mathematics, despite coming from a background of little formal

mathematical education. A biography of his life details a legend where a friend of

Ramanujan, K. S. Srinivasan, went to see him. “Ramanju,” his friend said, “they call you
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genius.” “Hardly a genius,” said Ramanujan, “Look at my elbow, it will tell you the story...

my elbow is making a genius of me” (Kanigel, 1992, p. 92). Ramanujan’s elbow, blackened

from using it to erase his slate which helped him work on mathematics day and night, is a

symbol of his persistent spirit which led him to “befriend every natural number.” The

moral of the story is that, although undoubtedly both innate and nurtured factors play

into just about any complex trait imaginable, even Ramanujan humbly acknowledged the

important role of practice. While historical icons like him are certainly noteworthy, it

leaves to dispel the idea that mathematics is only “for” people like them.

For one, as there are metaphors which develop between abstract domains and even

among metaphors themselves, the content of human mathematics readily becomes so

abstract that the extent to which it preserves the genuine structure of the physical world

dwindles. Although embodied intuitions underlying mathematical ideas are often simply

disregarded, abstraction does play an indispensable role in both the beauty and notoriety

of mathematics. While that fact is part of what makes mathematics challenging for many

people, and perhaps shockingly easy for some few select prodigies, it is not the full story.

Not all of mathematics is so abstract as to be divinely alien, and in the event that it is, it

involves the exploration of “possible worlds” through and in relation to knowledge which is

fundamentally embodied—for example, as posed, there is a good case that logic itself has

its basis in spatial intuitions about the world. On an empirical note, there is evidence from

functional Magnetic Resonance Imaging (fMRI) that in both hemispheres of the human

brain, the “prefrontal, parietal, and inferior temporal regions” which consistently activate

during numerical processing tasks, is recruited just the same when professional

mathematicians do higher mathematics (Amalric and Dehaene, 2016). Combined with the

finding from the same research that language-related faculties do not seem to play an

important role in any of these mathematical tasks, their research implies a relationship

between prelinguistic embodied numerical intuitions and facility with advanced

mathematics. So aside from a pedagogical sentiment that a strong mathematical
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foundation is key, this supports the claim that even the most abstract or “disembodied”

mathematics seems to be inevitably connected to bodily processing. Can one therefore

claim that only those with special bodily characteristics can understand mathematics?

A strongly affirmative answer to that question would be disingenuous. Surely, there

are exceptional cases where mathematically competent people have experienced unfortunate

conditions which demonstrably interfered with their ability (Dehaene and Cohen, 1997;

Dehaene and Cohen, 1991). For example, “Mr. M,” as he is dubbed by Dehaene, suffered a

lesion to the inferior parietal region, which created a double dissociation: He was able to

perform simple additions, but he could not perform as well on tasks related to subtraction

or the ordering of numbers. Furthermore, there are some horrible cases where

mathematical activity induces seizures in otherwise healthy individuals3 (Dehaene, 2011,

p. 191-192). On the other hand, in general, there are cases where variation in bodies

corresponds to differences in sensory perception which are part of the human experience,

but may lead to media being inaccessible (Zambo, 2008). All of this is relevant because

they are clear cases of when there are literal bodily constraints on mathematical capability;

biological heterogeneity should not be ignored. However, I argue that the summed

explanatory power of these reasons is not adequate to account for the disproportionate

fraction of able people who sincerely believe they are not capable of doing mathematics.

If one is inclined to accept the theory of embodied cognition as it applies to

mathematics, then one should also accept there is a sense in which the theory highlights

the blatant discrepancy between commonly held beliefs about mathematics and what ought

to be true about mathematics. To spell this out: If mathematics has an embodied origin,

then it is about perceptual generalities or invariants across embodied entities, each with a

unique and distinct body, yet these bodies are similar enough that a vast number of people

can identify, agree on, discuss, and explore the nature of said invariants. That is a

3 I know personally someone who was very interested in mathematics, but could not continue as a result of

such an affliction. It is a deeply upsetting matter.
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remarkable story which mathematics tells: Even though humans are all so diverse (as must

be recognized more and more), there are elements of individual human experiences that

echo across sensory modalities and serve to unify those experiences.

Therefore, an important consequence of this is that mathematical ability is not a

special gift which is reserved for Ramanujan, Gauss, or Euler, however gifted they may be.

It is not reserved for the clever prodigy or the white male elite, however historically

advantaged they may be (Loewen and Others, 1988). Instead, mathematics is something

which can be engaged with by people all around the world, of diverse bodies and

backgrounds. While it is fruitless to search for a single thing which brings humans together

into a monolithic category, mathematical ability comes close to being something truly

human. That which mathematics is about came before human experience; it exemplifies

itself in non-human animals and the natural world. So what prevents human bodies from

engaging in mathematics? Sure, there is diversity in interests; not everyone has to be a

“math person.” Regardless, for this to be a meaningful explanation of the explananda,

there must be some analysis of why people become uninterested in mathematics. It is not

just pedagogical challenges but also inequity in academic opportunity and stigma regarding

the subject which prevent capable people from believing in their mathematical ability.

These inequities run deep. There are clear examples of experiences which can serve

as identity fragmentation for young learners of mathematics, especially for vulnerable,

marginalized populations. To give one example, in a video which proves difficult to watch,

a first-grade teacher is heard harshly reprimanding a young Black girl for incorrectly

answering a mathematical question, asserting that “nothing infuriates [her, the teacher]

more than when you [the student] don’t do what’s on your paper,” and afterward asking

the class to show her the correct answer (Times, 2016). Nicole Joseph analyzes this incident

in her paper on “Black Femininist Mathematics Pedagogies” where she says that such

situations are “unfortunately... not an anomaly” (2021, p. 85-86). Her work sheds light on

the ways that Black girls are taught that they do not belong in mathematics and are not
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provided appropriate care or resources that would foster their mathematical identities. She

offers that a solution which promotes “robust math identities” through “ambitious math

instruction,” “critical consciousness and reclamation,” and “academic and social

integration.” Though contending that it is more than just lighthearted, rigorous instruction

that will do justice to underserved communities, she invites readers to “teach Black girls

more mathematics, not less.” In America, the project of bringing mathematics and science

literacy to economically disadvantaged students and students of color has been around for

at least as long as the Civil Rights Movement; see, for example, the Algebra Project,

founded by Bob Moses (Moses and Cobb, 2002). Since mathematical familiarity can confer

economic advantage if it leads to opportunity in high-paying jobs in applied fields, keeping

people from enjoying the benefits of mathematics altogether is disempowering and unjust.

Though there are material reasons to bring mathematics to more people, it may not

be obvious that mathematics pedagogy is worth pursuing in and of itself. As an answer to

this question, Francis Su’s recent book entitled Mathematics for Human Flourishing argues

that “deeply human themes” motivate people to do mathematics: exploration, play, and

beauty, to name a few (Azusa Pacific University - Lectures, 2020; Su, 2017). In a lecture on

his work, he dares listeners to question who they think of when they ask themselves, “Who

does mathematics?”. His question serves as an invitation to expand commonplace notions

of who gets to participate in mathematical communities of practice.

Mathematical Learning Games

In conclusion of the literary review section, some words on pedagogical mathematics

games are necessary before moving on to discussing a game-based solution. A systematic

review of literature on learning games for grade and undergraduate school students

reported a significant difference in metrics of student learning among game and non-game

conditions, with the data favoring digital learning games as enhancing learning

(D. B. Clark et al., 2016). Just as this study emphasizes that specific elements of the game
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implementation, such as using augmented reality (AR) or requiring repeated play, can

affect learning outcomes, more generally, a very recent study oriented specifically towards

mathematical games investigated the role of design quality on learning outcomes (Bullock

et al., 2021). The results of their analysis led to the conclusion that the quality of design

features of the game were closely related to the player’s awareness of the features, and

together these variables influence how a student benefits from the game. Therefore, while

learning games are a promising avenue of research, it is important that their details be

examined with great care.

Mathematical learning games have been around for years. Possibly the most famous

example includes CoolmathGames, with the Coolmath network having been founded in

1997 and still around today (“Cool Math Games,” 2022). A much more recently popular

example is Prodigy, which is notably similar to Pokémon, except the “dueling” mechanism

typically involves some sort of mathematical question (“Prodigy Math Game,” 2022).

While the game is an excellent means of engaging students with mathematics in a

stimulating context, the main content of the game is reasonably separate from the

mathematical elements, which arguably serves as a limitation of the game. In an ideal

situation, a mathematical learning game would integrate mathematical content into its

foundational design while also retaining pleasantness. Making noteworthy strides towards

this goal is ST Math, whose patented method has been empirically shown to significantly

increase mathematical achievement, up to threefold. It is hard to imagine that MIND

Research Institute, the creator of ST Math, is as a whole completely unfamiliar with the

embodied cognition theory presented here; they claim to leverage “the brain’s innate

spatial-temporal reasoning ability,” and even have a blog post about schemas (Buschkuehl,

n.d.; Institute, n.d.).

This concludes the literary review section. Given the current theories about the

nature of mathematics and the psychological and anthropological evidence surveying the

state of pedagogy, in the next section I demonstrate how to implement this information
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into an educational game.

Method

The methodology of this work is presented threefold. The first part contains a

description of the philosophy behind conceptual metaphor games. The second section

surveys a general picture of practical strategies for implementing the games in a variety of

contexts. Third, I describe implementation details for a demo level of a virtual game.

Philosophy

The first step to creating a conceptual metaphor game is to identify a metaphor and

explore it in concrete terms. In the literature review section entitled “Schema and

Metaphor,” the core motivation of the work was written using academic language from the

theory of embodiment in cognitive science. However, the embodied nature of these ideas

lends them to be illustrated in absence of the underlying theory.

Consider the Frog

Consider the frog who hops on lily pads, laid out in a long line in either direction.

As one observes the frog, there are some facts about the frog’s motion which, for many, are

nearly impossible to ignore. These are commonly held intuitions which may be considered

self-evident, as they are recurring motifs that show up repeatedly in situated human

worldviews, echoing through each of the senses, and deeply ingrained in animal biology. To

name one, when imagining this situation, it is implicitly assumed that the frog started

somewhere. Regardless of where she was before, there’s a sense that there is some source of

her action, and whenever she acts, she takes some path to reach a goal (see the description

of the Source-Path-Goal schema in the literature review). Another fact is that it seems the

frog could hop at any point, at least until she reaches the last lily pad on either side.

Alternatively, she could always choose to stay put and rest. A third is that in general there

is a sense of direction; the frog could hop left or hop right. These motions are “opposites”



CONCEPTUAL METAPHOR GAMES 31

of each other in the following sense: Supposing the lily pads are spaced out in a way where

each hop only allows her to move a single lily at a time, hopping left after hopping right or

vice versa takes her back to where she started. In other words, the combination of hopping

left and hopping right is “the same as” as staying put, meaning they have the same

outcome.

There are many similar facts. For example, what happens when she hops “left, left,

left” and then “right, right”?—it follows from the previous fact that this “amounts to” once

left. There are more complicated questions to ask as well; e.g., does the order of her

movement matter? Is “hop left, hop left, hop right” the same or different from “hop right,

hop left, hop left”? One could draw out some examples to test and, with some carefully

spent time, would consistently find that the order does not affect where the frog lands.

This may not be an immediately evident fact, but instead one that is discovered to be true

of the frog’s motion by empirical observation.

The story expands further: Imagine the frog skips a lily each time they hop. Now

this frog is hopping two lilies at a time, and there are some they will never land on until

they decide to take a different hop. Or perhaps they skip two lilies, or five. Now the

operation at play is multiplication. Suppose a frog only ever skips two lilies with its hops,

no more, no less; which lilies will they never be able to reach? Which lilies can they reach

that another frog may not be able to?

From the last example, the assumptions made in order to conceive of a situation like

this get somewhat ridiculous, but they are certainly imaginable and within reason. For

hops that skip one or two lily pads, these stories are physically realizable. Yet, it can be

entertaining to think about frogs hopping physically unrealistic distances; intuitions about

how things go at small distances extend in a consistent manner to dreams of, say, a frog

hopping over a hundred lilies at a time. Since much of mathematics is generalization from

“ideal” facts taken to be evident, thinking about such things is in fact natural and can

spark joy, taking the form of playful exploratory learning.



CONCEPTUAL METAPHOR GAMES 32

Therefore, the general idea is to gamify these sorts of explorations. Wherever a

mathematical metaphor reveals itself with clear self-evidence, either in nature or otherwise,

there is an opportunity to explore and learn about mathematics “from the source.” Take a

clear metaphorical mapping from the real world onto mathematics, and make a game out

of it. It is possible that similar things can be done with linking metaphors as well, but to

start out with, this work restricts to grounding metaphors.

Content

The following section serves as a practical pedagogical guide to implementing

conceptual metaphor games for the Arithmetic As Motion Along A Path metaphor, where

the source domain of the metaphor involves frogs hopping on lily pads. The study of this

particular class of conceptual metaphor games is what I endearingly dub frog theory. I first

discuss frog theory and then its practical application to education.

To be absolutely clear about terminology, the following definitions are crucial.

• A set, roughly speaking, is a collection of objects.

• A function is a rule which maps each element in a set to one element in another set.

• The set of natural numbers refers to the set {0, 1, 2, . . . } of whole numbers (including

zero, although in some cases 0 may be excluded).

• The set of integers refers to the natural numbers along with all their negatives:

{. . . , −2, −1, 0, 1, 2, . . . }.

• The set of rational numbers refers to all fractions; i.e., it refers to all numbers of the

form p
q

where p and q are integers, with q not zero.

Concepts

In everything that follows, imagine a very long line of lily pads upon which frogs can

hop. Let the 0-Lily always be the lily pad the relevant frog starts on, unless specified
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otherwise. For any positive natural number n, a frog which skips n − 1 lilies with each hop

is referred to as the n-Frog4, with the extra definition that the 0-Frog hops in place. Then

1-Frog hops one lily at a time, skipping none; the 2-Frog skips a lily with each hop; the

3-Frog skips two lilies each hop; and so on. When there is a frog but how far they hop is

not specified, it suffices to just say n-Frog. Let every other lily be “numbered” in the

natural way; e.g., the −3-Lily is reached via the 3-Frog hopping once left.

In general, jumping with the frog is an action that has an inverse (i.e., going left vs.

going right). This notion of “directionality” is both important in mathematics and

well-studied in cognitive science of mathematics, as demonstrated by, for example, the

literature on the SNARC effect. For these reasons, notions of function and inverse are here

throughout.

Numbers. Naturally, this metaphor lends itself to the discussion of numbers

themselves.

Addition and Subtraction. The accumulation of jumps by a frog is addition.

The 1-Frog hopping thrice is the same as the 3-Frog hopping once. The 1-Frog hops three

times, and then four times to make seven times. Or the 3-Frog hops once, and then the

4-Frog hops from that place. It can be discovered that the order of addition does not

matter, i.e. hops are commutative. Below is an example which explores partitions of

numbers, and it is phrased in two different ways, appropriate for different learners.

• Say some frog starts on some lily pad, then hops right, and then hops right again. If

the frog landed on the seventh lily to the right, how far could they have hopped each

time?

• Some n-Frog hops from the 0-Lily, and then from the n-Lily, some m-Frog hops. If

the m-Frog lands on the 7-Lily, what could m and n be?

4 Readers familiar with group theory can recognize the n-Frog to be the generating set {n, −n} of the

subgroup ⟨n⟩ = {. . . , −2n, −n, 0, n, 2n, . . . }.
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Here numbers are “being made”: in these examples, seven is being made from

different numbers. Alternatively, we can ask what numbers one can “make” as in: Say one

sees 2-Frog and 3-Frog. The 2-Frog rides on 3-Frog’s back when 3-Frog jumps, and 3-Frog

rides on 2-Frog’s back when 2-Frog jumps. Where can they go together? The solution is all

lilies! This corresponds to the fact that every integer can be written as 2x + 3y for some

integers x, y.

Subtraction comes up in the undoing of addition, and so also in doing algebra with

addition. When the 1-Frog hops 4 times, and then 3 times back, it is subtraction which

directly gives that they land on the 1-Lily. On the other hand, it is subtraction that tells

us that the 3-Lily is a 4-Frog away from the 7-Lily.

Multiplication and Division. Multiplication appears as hopping multiple lilies

at once. It comes up in general as counting the number of times one hops. If the 3-Frog

hops 4 times to the right, she reaches the 12-Lily (and again, it is the same as the 4-Frog

hopping three times).

Again we have the concepts of “making” and “being made”:

• Multiples: Say any frog hops alone. Where can they land? For example, the 3-Frog

could land on the 3-Lily, the 6-Lily, the 9-Lily, etc.

– Meet: Least common multiple. If the 2-Frog and the 7-Frog hop from zero,

where could they meet?

– Join: Greatest common multiple. Does not exist for natural numbers; e.g., 2-

and 7-Frog meet every 14 lilies.

• Factors: Say a frog hops by herself and lands on some lily. What frog could she have

been? (If she landed on the 8-Lily, she could be the 1-Frog, the 2-Frog, the 4-Frog,

the 8-Frog.)

– Meet: Least common factor. Always 1 (for natural numbers); the 1-Frog can

hop to any lily.
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– Join: Greatest common factor. At some point a frog is hopping, and she first

lands on the 8-Lily, and then the 12-Lily. What’s the largest hop the frog could

have made?

Every two frogs can eventually meet, provided the faster frog waits around long

enough, and the 1-Frog will always land anywhere (as slow as they may be). But some

frogs cannot meet faster than their product, e.g., 3-Frog and 7-Frog meet when 3-Frog goes

7 lilies and when 7-Frog goes 3 lilies. Naturally, 3-Frog goes slower than 7-Frog, so 7-Frog

must stop and wait on the 21-Lily. Additionally, assuming all frogs start at the 0-Lily, some

lilies cannot be reached by any frog along other than the 1-Frog and the lily associated to

that frog: e.g., the 13-Lily is reachable by the 1-Frog and the 13-Frog alone. No other frogs

can ever get there without help. Therefore a lily is prime when it is only reachable by the

1-Frog and exactly one other frog (again, with frogs starting from the 0-Lily, without help).

Modular Arithmetic (Finite Cyclic Groups). Limit the number of lilies to

a finite amount, arrange them in some sort of loop, and the same form of metaphor

immediately applies to modular arithmetic. For example, if the 3-Frog hops around twice

on five lily pads, she’ll land on the 1-Lily (i.e., somewhere 1-Frog lands after one hop). In

terms of modular arithmetic, this is related to the fact that 6 divided by 5 leaves a

remainder of 1, also written 6 ≡ 1 (mod 5).

With a prime number of lily pads, one is in the world of cyclic groups of prime

order. Say there are p lily pads for some prime number p. The 0-Frog stays in place, the

1-Frog goes around all the lily pads in p hops, and the p-Frog hops and lands right back

where it started in one hop. Every other frog does an advancing loop of p hops around the

entire circle before it lands back where it started. For example, take p = 7; seven lily pads.

The 1-Frog goes around in seven hops, the 7-Frog goes in one hop. On her first circle

around, the 2-Frog skips over the 7-Lily, which is the same as the 0-Lily, and lands on the

1-Lily. That is her fourth hop, and she takes three more hops to land back on the 0-Lily,

making a total of p = 7 hops. In this arrangement of seven lily pads, there is the same kind
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of behavior for n = 2, 3, 4, 5, or 6. On a group-theoretic level, this corresponds to the fact

that cyclic groups of prime order are simple, meaning they have no nontrivial proper

subgroups.

The following is a way to compute divisibility of a number x by a nonzero number

y, i.e., decide whether there is a nonzero remainder when dividing x by y, and if there is,

determine what it will be.

1. Choose there to be x lilies in a circle and use the y-Frog.

2. Start the y-Frog on some lily and let them hop as many times as possible without

hopping over the starting lily.

3. If the y-Frog has reached the starting lily, then x is divisible by y; otherwise, the

remainder is how many lilies are left to get to the starting lily from where the y-Frog

ended.

To be more precise about step 3, the remainder r is the number of hops that 1-Frog

would need to go from where the y-Frog ended to get to the starting lily. Formally, if the

y-Frog is on the z-Lily, where z = y − r and 0 < r < x, then r is the remainder. For

example, take the division of 11 by 5. By step 1, there are eleven lilies. By step 2, the

5-Frog hops twice and lands on the 10-Lily. On step 3, one concludes 11 is not divisible by

5, with a remainder of one.

Mixed Algebra. Some frog has a 3-Frog on her back. She hops three times.

Then, the 3-Frog gets off her back, takes a hop, and lands on the 15-Lily. Who was the

first frog? The answer is the same as the solution for x in the equation 3x + 3 = 15, so she

must have been the 4-Frog.

Two-Dimensional Frogs (Cartesian Products). Taking the product of the

set of integers with itself extends the metaphor to the two-dimensional Cartesian plane.

Now there is not just left and right, but also up and down. Here, there is a geometric

notion of right angles, or in general of orthogonality: moving up or down does not affect
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how far the frog has hopped left or right, and vice versa. The products can technically can

be extended to arbitrarily many dimensions, but naturally, the further the situation strays

from a frog hopping on lily pads in a pond, the less concrete the metaphor becomes.

The decision to allow frogs to hop diagonally can involve the idea that in a square

grid, diagonals are longer than straight paths. In the real world, if there’s a 1-Frog, they

are probably not literally always hopping some fixed unit distance each time, but instead

they are called the 1-Frog because they hop one lily at a time. In a grid of lilies, though,

one could imagine that the 1-Frog’s hop is not far enough to go diagonally across lilies.

This could be a way to open up a whole world of analytic geometry, including talk of a
√

2-Frog who hops along grid diagonals, but this is far beyond the metaphor; even starting

to talk about fractions gets weird here, as described next.

Rational numbers. There is a possible extension of these ideas to fractions,

involving “half-jumps,” “third-jumps” and such. However, the fact that this extension does

not readily lend itself to interpretation within the context of the metaphor so far indicates

that one is stepping out of the realm of integers and into the field of fractions of the

integers, known as the rational numbers. This may be hard to execute properly outside of

a video game context, but there are some benefits to the perspective. For one, if there

exists a 1
2 -frog, say, then the benefit is that it emphasizes that fractions are numbers which

can be repeatedly counted, like any other. Pronouncing “1
3 -Frog” as “third-Frog”

emphasizes this, since its hops “add up” exactly the same as the 1-Frog, except on appends

“third(s)” to the end of where it lands. For example, the third-Frog hopping five times

yields five-thirds... of a lily?5

5 Addendum: There is in fact a nicer way to deal with rationals that I overlooked in the original thesis, as

pointed out by my committee member Dr. Cornel. It is still a different metaphor, but it works nicely:

Instead of treating a single frog hop as one unit, instead an entire pond could represent “one,” and, say, if

there are three lilies in the pond, then one has the third-Frog.
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The Collatz Conjecture. This is a bonus topic for the natural numbers: the

3n + 1 problem, also known as the Collatz conjecture. The conjecture is a long-standing

unsolved problem in mathematics which predicts that a certain simple process in the

natural numbers always stops in a finite number of operations. The player is given a

particularly magical frog, and is allowed to move the frog to any lily to the right (positive)

of where they started, and when they are ready, the procedure begins:

• If the current lily is even-numbered, the frog hops back half of the way to start; i.e., if

she was on the n-Lily, she becomes the n
2 -Frog and hops once left to arrive at the

n
2 -Lily.

• Instead, if she is on an odd lily, she hops to the 3n + 1-Lily; i.e., she becomes the

n-Frog, hops two times to the right (as she’s already on the n-Lily, so hopping three

times would be 4n + 1), and then hops once right as the 1-Frog.

This process repeats, sometimes over and over again, until a certain loop is

encountered: If the frog ever reaches the 1-Lily, then her hops will go 1-Lily 7→ 4-Lily 7→

2-Lily 7→ 1-Lily, and she’s back where she started. Therefore, one can say that the process

“ends” when she reaches the 1-Lily, because she will just loop from there. The 3n + 1

conjecture states that this process will always have the frog end up back at the 1-Lily,

regardless of the initial choice of lily. Since no proof has been offered of this fact, nor a

single counterexample which would disprove it, the problem remains open.

Logic and Computation. Since the target domain of the metaphor is

arithmetic, it makes sense to discuss numbers, but it equally makes sense to focus on

concepts in logic and the theory of computation without stretching the idea, as I show here.

Frog Automata. Many of the proceeding exercises can be implemented in terms

of “frog automata.” The basic idea is as follows. For this first example, fix a direction for

frogs to hop, either right or left. Place frogs on lily pads, and have some frog be the

starting frog on an initial lily pad. If the start frog lands on a lily that has another frog
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sitting on it, the start frog “startles” the other frog, causing them to hop. If that frog lands

on another frog’s lily, the same thing happens, and so on, until a frog reaches a lily that

doesn’t have a frog.

Figure 1

A simple frog automaton to catch a fly with 2-Frogs.

Figure 2 shows an abstract version of a puzzle involving frog automata. The

leftmost dot represents the starting lily with a 3-Frog on it. The red dot represents a bug

that the frogs want to catch. Assuming frogs only move right, how can one place frogs on

the lily pads so that the last frog catches the bug? There are precisely sixteen different

ways, each of which is drawn in the figure. One way to interpret the result is that these

sixteen ways have something to do with the partitions of the number five, but properly

speaking, there are only seven distinct such partitions: 5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1,

2 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1. A more faithful interpretation of the solution is that it

corresponds to the number of ways to select zero or more lilies from a group of four lilies

(i.e., the ones between where the 3-Frog lands after their hop and where the bug is), since

what one is “selecting” is which lilies to land on. Since, in general, there are 2k subsets of k

items, and in this case k = 4, there end up being 24 = 16 solutions. The arrangement of

these solutions in the figure below demonstrates the connection to powers of two in that the

pattern of grey and green lilies is such that they look like binary strings, starting from the

binary number 0000 in the second row from the top and ending with 1111 in the final row.

A brief note is that nondeterministic frog automata can be specified by allowing
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multiple directions without specifying which direction ought to be traveled, or by placing

multiple frogs on a single lily.

Frog Puzzles. It is possible to explore different sorts of puzzles. Listing out all

the different extensions is not possible, but an example is shown in Figure 3. Suppose this

frog is a {3, 5}-Frog, i.e., it can imitiate the 3-Frog or the 5-Frog, but no one else. This frog

wants the fly but she doesn’t want to kerplunk into the water! To catch the bug, imitating

the 3-Frog alone won’t suffice; she’ll fall into the hole right before the fly. The 5-Frog

overshoots and falls in the water. The solution, instead, is to go right with the 5-Frog, and

then left with the 3-Frog, and finally right again with the 5-Frog to catch the fly! This can

be presented by allowing the player to “switch” frogs in this fashion, but it also works to

set this up as a frog automaton puzzle.

Limits of the Metaphor

Before turning to practical matters, a last bit of theory is reiterated concerning how

far the metaphor Arithmetic Is Frog Hops Upon Lily Pads goes. Let a statement p be

internal to the integers if its domain of discourse is the set Z of integers, i.e., it only refers

to integers and relations over on the integers. Then the theory presented in the previous

sections implies that a proposition p internal to the integers can be expressed as a fact

about frogs hopping on lily pads provided that p quantifies over (i.e., applies to) only finite

sets; unless one grants there could be an infinite number of lily pads. In the case that p

quantifies over an infinite subset of Z, the quantifiers of p must be restricted to some finite

set. In practice, this does not seem so limiting, and so it turns out that there is a way to

discuss just about any fact about the integers by “inverting” the conceptual metaphor and

“returning” the fact to a physical source domain.

Practice

In order for the methods presented here to be useful, there must be some guidance

on how they are to be used. While it is unscientific to state with certainty what works best
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without some sort of empirical evidence6, a working methodology is essential. The content

outlined in the previous section is intended to set examples of how to think about

conceptual metaphor games in general and how the content gets turned into pedagogical

material. After the content is acquired, it must be presented either in the real world or

virtually.

Once a feasible conceptual metaphor is identified, one way to go about working with

students directly is a threefold procedure. One, the question poser should consider their

audience to inform a decision as to what kind of content will be relevant. What should be

known about the identities of the students, both as individuals and as learners of

mathematics? Second, the presenter should spend some time exploring the content

themselves by playing with ideas, forming appropriate ways to ask questions that get at

key concepts. Finally, the presenter implements the content into a format which allows the

students to engage with it, typically in the form of verbal, visual, tactile, or other sorts of

problems to be solved. The particular choice of medium depends on the audience, but one

method is a written problem set which the students discuss among themselves or with the

question poser.

When exploring frog theory with many students, the proposed method to

communicate the rules of the games and ensure understanding at every step thereafter is to

work with people one-on-one. Posing problems as lighthearted questions and allowing for a

degree of dynamic feedback can help facilitate learning as conversation and exploration.

Furthermore, by working with individuals or small groups rather than large classrooms, the

presenter can actively adjust the exposition content to be more appropriate and appealing

to the audience.

6 I have firsthand experience working with elementary school students on these kinds of problems. I claim

to have had positive results, but the justification of such a claim is beyond the scope of this work.
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Frog World

Frog World is a virtual game concept which is based on the ideas presented here.

The game involves two main modes: exploration mode and puzzle mode. In exploration

mode, the player is encouraged to wander around an “infinite” line or grid of lily pads,

where they might find bugs that cure their hunger. On certain occasions, or when the frog

gets hungry, the player needs to go on quests which send them into puzzle mode. The

puzzles are presented as either click-and-drag frog automata or “free” puzzles where the

player is invited to move around their frog directly. During puzzles, the player is

encouraged to try different solutions and is shown the outcome of their guesses, e.g., by

“running” the frog automaton to see what happens. Upon puzzle success, players are

rewarded with experience points and various collectibles, such as new attire for their frogs

or frogs themselves.

The game is intended to serve as a kind of epistemic play where students learn by

discovering the properties of the game world (Hutt et al., 1980). In an ideal version of Frog

World, the concept could be sufficiently general so as to apply to a wider variety of age

groups, varying quest difficulty based on the learner. As demonstrated in the “Content”

section, concepts lend themselves to different levels of analysis in the range from concrete

to highly abstract.

The embodied design aspects show up in two main ways. First, the conceptual

metaphor premise of the game makes for a highly visual-tactile environment which, as a

result, relies very little on specific language. Therefore, the game is accessible across

language barriers and presents a “friendly” version of a rigorous mathematical metaphor

with an anthropomorphic frog. Second, the controls of the game are intended to be

gestural in nature. Relevant to the SNARC effect, during exploration mode, the player

must press on the right of the screen for the frog to go right, and clicks on the left of the

screen to go left. This supports the association of “right” with “greater quantity” and

“left” with “lesser quantity”; if desired, the convention can be swapped for people who
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predominantly write right-to-left. Additionally, in order to hop n times, the player must

click n times, thus physically realizing the cardinal aspect of the number n.

Implementation Details. The demo level of Frog World was developed as a

browser-based game using HTML5, CSS, JavaScript, and Node.js, intended to be accessible

to anyone with a device which has Internet access, so that no download or installation is

necessary. The game framework used was p5.js, “an interpretation of Processing for today’s

web” which focuses on accessibility (“p5.js,” 2022). The target audience for the demo

implementation is grade school students, especially late elementary (3rd-5th grade). See

the appendix for more details.

The features of the demo match the main premise of the game, but they are limited

in scope. The demo contains both the exploratory mode and the “frog automaton builder”

for puzzles. Three main maps were implemented: “linear”, “linear 2D,” and “cyclic.” The

linear mode is the default, consisting of an infinitely long line of lilies (the infinite cyclic

group). The second mode implements an infinite two-dimensional grid of lilies, as in the

Cartesian product of the integers with itself (product of infinite cyclic groups). Third, the

cyclic mode generates lilies in a circle for modular arithmetic (finite cyclic groups). Finally,

besides the implementation of puzzles which were described in the previous section, the

game also implements a simulatory visualization of cycles from the 3n + 1 problem.

Discussion

In this work, I have exemplified a method for making pedagogical puzzle games for

inspiring interest in and learning mathematics. Besides expounding the theoretical

grounding in the embodied and situated cognitive science of mathematics, the last section

also provides practical materials which can serve towards the goal of empirically evaluating

the method. Importantly, the research conducted suggested that conceptual metaphor can

be the motivation for learning games which appear to extend to a very wide variety of

mathematical content. Because the games are ripe for low-stress, dialogue-based learning,
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they can serve as a means to building positive experiences with mathematics and hence the

fostering of mathematical identities.

In elaboration of the methods, I hoped to show how “frog theory” is not limited to

one level of mathematics, but also explains ideas in abstract mathematics such as group

theory. Lakoff and Núñez go much further in their book at explaining how the modern

mathematical canon, even showing that the famous Euler identity eiπ + 1 = 0 can be

reduced to embodied metaphors. I do not comment extensively here on their analysis of

“higher” mathematics, but their general framing is consistent with the neurobiological

evidence touched on, i.e., brain networks associated to arithmetic behaviors are recruited

also in doing abstract mathematics (Amalric and Dehaene, 2016). It is also common to

discuss mathematical content as scaffolding or building upon itself (e.g., Wriston, 2015).

All of this suggests the importance of individuals’ comfort with their mental models of

mathematics fundamentals.

Given that the ideas here are from the theory of embodied cognition, one might

expect that their implementation is embodied in a strong sense. The term “embodiment”

here evokes some sense of multi-modal physicality, or of haptic cognition, that is, relating to

tactile perception. Perhaps this method works best by encouraging students to literally get

their bodies involved when exploring the content and solving the questions. While I fully

encourage directly embodied approaches of this kind, the theory appears to provide few

restrictions on specific implementation details, largely owing to the amodal nature of

mathematics. For example, a recent work discusses the benefits of embodied design,

emphasizing the use of gesture and physical manipulatives (Abrahamson et al., 2020). On

the other hand, that very same work also describes the use of video games, one of which

was made as a level of the popular video game LittleBigPlanet and does not necessarily

have to “get the whole body involved”; although, in fairness, they do include analysis of

the verbal-gestural utterances of the players of the game. Moreover, part of what makes

the embodied approach useful is that it includes a wide variety of bodies by revolving
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around the “barebones” of mathematical knowledge. For example, in the case of students

for which visual learning is not at all an option, haptic exploration can be extremely

important. In fact, solely auditory resources can theoretically be an option for people who

need it, for example by using the SNARC effect to one’s advantage; in practice, though, it

is expected that multi-modal approaches would turn out to be empirically stronger. All

this goes to say, though, that embodied design does not have to be limited to normal

conceptions of “embodiment.” After all, so much of the embodied theory goes to show that

faculties which are often (or were previously) thought of as disembodied, such as visual

perception and even abstract mathematics, do in fact have deeply embodied aspects.

In contrast, virtual games can be beneficial over real-world implementations for

some purposes. A nice feature of the virtual presentation is that it allows for efficient,

captivating media that supports intuitive understanding. It is becoming increasingly easy

to create high-quality mathematical animations, for example with 3Blue1Brown’s manim

library (Sanderson, 2022). Furthermore, to work within the framework of embodied

cognition is to recognize the intrinsic physicality of cognitive labor, but, while on the

surface it may appear to backtrack on the underlying assumptions central to this work,

there is in fact no contradiction in recognizing the extent to which mathematics does not

preserve physical reality. Mathematics importantly involves idealization and abstraction!

When one speaks of a frog hopping on lily pads, one has to work from an abstract

perspective by taking each distinct lily pad to be “of the same kind,” so they can be

counted. There is a sort of “perfection” to the way the imaginary frogs hop on lily pads in

that they must do exactly what they do and nothing else.

Nonetheless, it is clear that more research is needed to claim anything definite

about this work. First, the method has not been empirically tested, so by scientific

standards, it would be vacuous to claim anything about its promise as an educational

strategy. This work does not outline any specific experimental design, thus that is left as

an avenue of future work. Second, a possible limitation of the Frog World demo is that it is
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a single-player game, and these games are posited to work best when a student and a

mentor can discuss and explore them together. While multiple people can tune in and play

the game together, more could be done to integrate mutual exploration. It goes to show

the demo level of the game is just that: a demo, and much more work could be put into the

depth, richness, and playability of the game. As it stands, the game is not suitable for

repeated play; future versions of the game would necessarily correct this. Last, I have

claimed that these conceptual metaphor games are a general idea, but have done little in

the way of providing resources for games other than Frog World. Future work would

involve researching how easily other grounding metaphors and more complicated linking

metaphors extend to games.

As a final criticism, while not an intrinsic limitation of the general method, the

model of zooming in on one particular metaphor can be restricting for a few reasons. As

explained in the literature review section, researchers have directed a fair bit of criticism

towards the original work of Lakoff and Núñez which grounds this work, namely in that it

posits a rather stringent view of mathematics in favor of a consistent methodology

(McShane et al., 2019; Sinclair and Schiralli, 2003). I have argued that these criticisms are

not earth-shattering to the application of the theory demonstrated here, but it is possible

this is a hasty generalization over the vast amount of work that exists on the topic.

Because a significant amount of prior literature has shown mathematical learning games to

have a positive influence on learning outcomes, an empirical analysis of the effectiveness of

the proposed pedagogical practice would ideally have a control game which is not grounded

in the same theory. Further, not only is it possible to push the limits of one particular

metaphor to the point where it becomes unhelpful, presenting multiple different contexts

for the same idea could prove to be better than focusing strongly on one context. In order

to understand why the generalities of mathematics are important, it can be helpful to see

many particular cases in which those generalities are realized. For this reason, I encourage

further research on a diverse range of metaphors.
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Figure 2

An abstract frog automaton puzzle (top row) and solutions (bottom sixteen rows). The

initial frog is a 3-Frog (far left, green), and the goal is to place frogs so they catch the bug

(far right, red).
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Figure 3

A frog puzzle where the frog wants to eat the fly, but the player is only allowed to use the

3-Frog and 5-Frog in either direction, and must stay on the shown lilies. There is a gap

between the last lily and the one before it.

Figure 4

A screenshot from the Frog World demo. A frog hops on a lily towards a fly.
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Appendix

Additional Implementation Details

As described in the main text, Frog World was implemented in p5.js (“p5.js,” 2022). The

demo is intended to be as playable as possible with minimal instruction, however there are

some features of the game not directly addressed by either the main paper or the demo.

Note that while the game is not publicly available at the time of writing this, I intend to

upload the game to my website at https://lauraann.dev.

Figure A1

The Frog World menu. Bees fly around the screen as the camera pans around a scenic

menu background with some “tree-Frogs.”

Camera. All playable levels are implemented with a fully functional custom

camera object. The camera object has a specified center (x, y) and a resolution given by

(w, h). Each frame, objects whose bounding box intersects the rectangle

(x − w/2, y − h/2) × (x + w/2, y + h/2) are drawn on the screen. The camera object is

equipped with two important methods, toWorldCoords and toCamCoords; these methods

convert between world space (global coordinates) and camera space (space where the origin

https://lauraann.dev
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is fixed at the camera center). In exploratory mode, pressing Y on the keyboard unlocks

the camera and allows panning by moving the mouse to either edge of the screen. Scrolling

the mouse wheel zooms in or out.

Jumping. Jumping is a fixed animation, without any simulated physics.

Operations act directly on the frog’s position in world space with linear interpolations of

the position components of source lily and the destination lily. This formulation allows a

general jump function to be used for both linear and cyclic modes. Each jump corresponds

to one click, and as mentioned, jump direction is specified by the position of the mouse

relative to a vertical axis. Light help lines are drawn to show where the frog will land with

each jump, spatially embodying the frog’s cardinality.

A secret is that pressing up and down on the keyboard changes the “type” of frog,

e.g., pressing up with the 1-Frog gives the 2-Frog. However, this functionality would be

more constrained in a future version of the game.

Lilies. For linear mode, the lilies are “infinitely” looped by calculating the

position of the lily that intersects the left bound of the screen, and then drawing enough

lilies to fill the width of the screen (depending on a given padding parameter). In cyclic

mode, lily positions are generated with cosine and sine.

Objectives. The demo game has three main objectives. The first is to complete

quests specified by the quest manager. The second objective is puzzles; for example, upon

completing the first quest in the demo, a wizard frog “warps” the player into puzzle mode.

The third objective is to sate the frogs’ hunger, and it always applies. This third objective

is an important means to organically encouraging solving quests in return for bugs to eat

while discouraging dilly-dallying, as running out of hunger means the game is over.

Puzzles. The camera is locked and anchored in puzzle mode, and the player at

first cannot move. A puzzle level resets after the player is able to see that they have picked

an incorrect choice; i.e., the game lets the user try different options. An example is shown

in Figure A2. In the top left, the snail counter is displayed, which increases with each level
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Figure A2

A Frog World factors puzzle.

cleared. On the right is the hunger bar, which fades as the frog hops around. When the

player hovers over each frog button, the help lines change to reflect the distance hopped by

that frog. After the user clicks the button, they are allowed to jump with the frog to try to

get the snail. If the player catches the snail, they win the level and move on; otherwise,

they reset back to the beginning. In the example shown, the correct solution is to click the

3-Frog and hop three times to the right.

Art. I have rights to all art in the game. Any art that I did not directly create

(i.e., anything but the frogs and flies) was the work of my friend Kyle Lynn, who

contributed greatly to the aesthetics of this project.
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